A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition
نویسنده
چکیده
Earlier work has shown that no extension of the Eckart–Young SVD approximation theorem can be made to the strong orthogonal rank tensor decomposition. Here, we present a counterexample to the extension of the Eckart–Young SVD approximation theorem to the orthogonal rank tensor decomposition, answering an open question previously posed by Kolda [SIAM J. Matrix Anal. Appl., 23 (2001), pp. 243–355].
منابع مشابه
Orthogonal Rank Decompositions for Tensors
The theory of orthogonal rank decompositions for matrices is well understood, but the same is not true for tensors. For tensors, even the notions of orthogonality and rank can be interpreted several diierent ways. Tensor decompositions are useful in applications such as principal component analysis for multiway data. We present two types of orthogonal rank decompositions and describe methods to...
متن کاملOrthogonal Tensor Decompositions
We explore the orthogonal decomposition of tensors (also known as multidimensional arrays or n-way arrays) using two different definitions of orthogonality. We present numerous examples to illustrate the difficulties in understanding such decompositions. We conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebr...
متن کاملOn Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors
The Schmidt-Eckart-Young theorem for matrices states that the optimal rank-r approximation to a matrix is obtained by retaining the first r terms from the singular value decomposition of that matrix. This work considers a generalization of this optimal truncation property to the CANDECOMP/PARAFAC decomposition of tensors and establishes a necessary orthogonality condition. We prove that this co...
متن کاملOn the Tensor Svd and Optimal Low Rank Orthogonal Approximations of Tensors
Abstract. It is known that a high order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD) of a tensor. In face of ...
متن کاملOn the Tensor SVD and the Optimal Low Rank Orthogonal Approximation of Tensors
It is known that a higher order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD). In face of these difficulties t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 24 شماره
صفحات -
تاریخ انتشار 2003